Constraints
Constraint Templates
Constraint templates help simplify data wrangling across multiple Power Flow formulations by providing an abstraction layer between the network data and network constraint definitions. The constraint template's job is to extract the required parameters from a given network data structure and pass the data as named arguments to the Power Flow formulations.
These templates should be defined over GenericPowerModel
and should not refer to model variables. For more details, see the files: core/constraint_template.jl
and core/constraint.jl
.
Generator Constraints
PowerModels.constraint_active_gen_setpoint
— Function.pg[i] == pg
PowerModels.constraint_reactive_gen_setpoint
— Function.qq[i] == qq
do nothing, this model does not have reactive variables
Bus Constraints
Setpoint Constraints
PowerModels.constraint_theta_ref
— Function.reference bus angle constraint
t[ref_bus] == 0
t[ref_bus] == 0
t[ref_bus] == 0
Do nothing, no way to represent this in these variables
v[i] == vm
v[i] == vm
do nothing, this model does not have voltage variables
KCL Constraints
PowerModels.constraint_kcl_shunt
— Function.sum(p[a] for a in bus_arcs) + sum(p_dc[a_dc] for a_dc in bus_arcs_dc) == sum(pg[g] for g in bus_gens) - sum(pd[d] for d in bus_loads) - sum(gs[s] for s in bus_shunts)*v^2
sum(q[a] for a in bus_arcs) + sum(q_dc[a_dc] for a_dc in bus_arcs_dc) == sum(qg[g] for g in bus_gens) - sum(qd[d] for d in bus_loads) + sum(bs[s] for s in bus_shunts)*v^2
sum(p[a] for a in bus_arcs) + sum(p_dc[a_dc] for a_dc in bus_arcs_dc)== sum(pg[g] for g in bus_gens) - sum(pd[d] for d in bus_loads) - sum(gs[s] for s in bus_shunts)*1.0^2
sum(p[a] for a in bus_arcs) + sum(p_dc[a_dc] for a_dc in bus_arcs_dc) == sum(pg[g] for g in bus_gens) - sum(pd[d] for d in bus_loads) - sum(gs[s] for d in bus_shunts)*w[i]
sum(q[a] for a in bus_arcs) + sum(q_dc[a_dc] for a_dc in bus_arcs_dc) == sum(qg[g] for g in bus_gens) - sum(qd[d] for d in bus_loads) + sum(bs[s] for d in bus_shunts)*w[i]
PowerModels.constraint_kcl_shunt_ne
— Function.sum(p[a] for a in bus_arcs) + sum(p_dc[a_dc] for a_dc in bus_arcs_dc) + sum(p_ne[a] for a in bus_arcs_ne) == sum(pg[g] for g in bus_gens) - sum(pd[d] for d in bus_loads) - sum(gs[s] for s in bus_shunts)*vm^2
sum(q[a] for a in bus_arcs) + sum(p_dc[a_dc] for a_dc in bus_arcs_dc) + sum(q_ne[a] for a in bus_arcs_ne) == sum(qg[g] for g in bus_gens) - sum(qd[d] for d in bus_loads) + sum(bs[s] for s in bus_shunts)*vm^2
sum(p[a] for a in bus_arcs) + sum(p_ne[a] for a in bus_arcs_ne) + sum(p_dc[a_dc] for a_dc in bus_arcs_dc) == sum(pg[g] for g in bus_gens) - sum(pd[d] for d in bus_loads) - sum(gs[s] for s in bus_shunts)*w[i]
sum(q[a] for a in bus_arcs) + sum(q_ne[a] for a in bus_arcs_ne) + sum(q_dc[a_dc] for a_dc in bus_arcs_dc) == sum(qg[g] for g in bus_gens) - sum(qd[d] for d in bus_loads) + sum(bs[s] for s in bus_shunts)*w[i]
Branch Constraints
Ohm's Law Constraints
PowerModels.constraint_ohms_yt_from
— Function.Creates Ohms constraints (yt post fix indicates that Y and T values are in rectangular form)
p[f_idx] == (g+g_fr)/tm*v[f_bus]^2 + (-g*tr+b*ti)/tm*(v[f_bus]*v[t_bus]*cos(t[f_bus]-t[t_bus])) + (-b*tr-g*ti)/tm*(v[f_bus]*v[t_bus]*sin(t[f_bus]-t[t_bus]))
q[f_idx] == -(b+b_fr)/tm*v[f_bus]^2 - (-b*tr-g*ti)/tm*(v[f_bus]*v[t_bus]*cos(t[f_bus]-t[t_bus])) + (-g*tr+b*ti)/tm*(v[f_bus]*v[t_bus]*sin(t[f_bus]-t[t_bus]))
Creates Ohms constraints (yt post fix indicates that Y and T values are in rectangular form)
Creates Ohms constraints (yt post fix indicates that Y and T values are in rectangular form)
p[f_idx] == -b*(t[f_bus] - t[t_bus])
Creates Ohms constraints (yt post fix indicates that Y and T values are in rectangular form)
Creates Ohms constraints (yt post fix indicates that Y and T values are in rectangular form)
PowerModels.constraint_ohms_yt_to
— Function.Creates Ohms constraints (yt post fix indicates that Y and T values are in rectangular form)
p[t_idx] == (g+g_to)*v[t_bus]^2 + (-g*tr-b*ti)/tm*(v[t_bus]*v[f_bus]*cos(t[t_bus]-t[f_bus])) + (-b*tr+g*ti)/tm*(v[t_bus]*v[f_bus]*sin(t[t_bus]-t[f_bus]))
q[t_idx] == -(b+b_to)*v[t_bus]^2 - (-b*tr+g*ti)/tm*(v[t_bus]*v[f_bus]*cos(t[f_bus]-t[t_bus])) + (-g*tr-b*ti)/tm*(v[t_bus]*v[f_bus]*sin(t[t_bus]-t[f_bus]))
Creates Ohms constraints (yt post fix indicates that Y and T values are in rectangular form)
Do nothing, this model is symmetric
Creates Ohms constraints (yt post fix indicates that Y and T values are in rectangular form)
Creates Ohms constraints (yt post fix indicates that Y and T values are in rectangular form)
PowerModels.constraint_ohms_y_from
— Function.Creates Ohms constraints for AC models (y post fix indicates that Y values are in rectangular form)
p[f_idx] == (g+g_fr)*(v[f_bus]/tr)^2 + -g*v[f_bus]/tr*v[t_bus]*cos(t[f_bus]-t[t_bus]-as) + -b*v[f_bus]/tr*v[t_bus]*sin(t[f_bus]-t[t_bus]-as)
q[f_idx] == -(b+b_fr)*(v[f_bus]/tr)^2 + b*v[f_bus]/tr*v[t_bus]*cos(t[f_bus]-t[t_bus]-as) + -g*v[f_bus]/tr*v[t_bus]*sin(t[f_bus]-t[t_bus]-as)
PowerModels.constraint_ohms_y_to
— Function.Creates Ohms constraints for AC models (y post fix indicates that Y values are in rectangular form)
p[t_idx] == (g+g_to)*v[t_bus]^2 + -g*v[t_bus]*v[f_bus]/tr*cos(t[t_bus]-t[f_bus]+as) + -b*v[t_bus]*v[f_bus]/tr*sin(t[t_bus]-t[f_bus]+as)
q_to == -(b+b_to)*v[t_bus]^2 + b*v[t_bus]*v[f_bus]/tr*cos(t[f_bus]-t[t_bus]+as) + -g*v[t_bus]*v[f_bus]/tr*sin(t[t_bus]-t[f_bus]+as)
On/Off Ohm's Law Constraints
PowerModels.constraint_ohms_yt_from_on_off
— Function.p[f_idx] == z*(g/tm*v[f_bus]^2 + (-g*tr+b*ti)/tm*(v[f_bus]*v[t_bus]*cos(t[f_bus]-t[t_bus])) + (-b*tr-g*ti)/tm*(v[f_bus]*v[t_bus]*sin(t[f_bus]-t[t_bus])))
q[f_idx] == z*(-(b+c/2)/tm*v[f_bus]^2 - (-b*tr-g*ti)/tm*(v[f_bus]*v[t_bus]*cos(t[f_bus]-t[t_bus])) + (-g*tr+b*ti)/tm*(v[f_bus]*v[t_bus]*sin(t[f_bus]-t[t_bus])))
-b*(t[f_bus] - t[t_bus] + vad_min*(1-branch_z[i])) <= p[f_idx] <= -b*(t[f_bus] - t[t_bus] + vad_max*(1-branch_z[i]))
Creates Ohms constraints (yt post fix indicates that Y and T values are in rectangular form)
p[f_idx] == g/tm*w_fr[i] + (-g*tr+b*ti)/tm*(wr[i]) + (-b*tr-g*ti)/tm*(wi[i])
q[f_idx] == -(b+c/2)/tm*w_fr[i] - (-b*tr-g*ti)/tm*(wr[i]) + (-g*tr+b*ti)/tm*(wi[i])
PowerModels.constraint_ohms_yt_to_on_off
— Function.p[t_idx] == z*(g*v[t_bus]^2 + (-g*tr-b*ti)/tm*(v[t_bus]*v[f_bus]*cos(t[t_bus]-t[f_bus])) + (-b*tr+g*ti)/tm*(v[t_bus]*v[f_bus]*sin(t[t_bus]-t[f_bus])))
q[t_idx] == z*(-(b+c/2)*v[t_bus]^2 - (-b*tr+g*ti)/tm*(v[t_bus]*v[f_bus]*cos(t[f_bus]-t[t_bus])) + (-g*tr-b*ti)/tm*(v[t_bus]*v[f_bus]*sin(t[t_bus]-t[f_bus])))
Do nothing, this model is symmetric
Creates Ohms constraints (yt post fix indicates that Y and T values are in rectangular form)
p[t_idx] == g*w_to[i] + (-g*tr-b*ti)/tm*(wr[i]) + (-b*tr+g*ti)/tm*(-wi[i])
q[t_idx] == -(b+c/2)*w_to[i] - (-b*tr+g*ti)/tm*(wr[i]) + (-g*tr-b*ti)/tm*(-wi[i])
PowerModels.constraint_ohms_yt_from_ne
— Function.p_ne[f_idx] == z*(g/tm*v[f_bus]^2 + (-g*tr+b*ti)/tm*(v[f_bus]*v[t_bus]*cos(t[f_bus]-t[t_bus])) + (-b*tr-g*ti)/tm*(v[f_bus]*v[t_bus]*sin(t[f_bus]-t[t_bus])))
q_ne[f_idx] == z*(-(b+c/2)/tm*v[f_bus]^2 - (-b*tr-g*ti)/tm*(v[f_bus]*v[t_bus]*cos(t[f_bus]-t[t_bus])) + (-g*tr+b*ti)/tm*(v[f_bus]*v[t_bus]*sin(t[f_bus]-t[t_bus])))
Creates Ohms constraints (yt post fix indicates that Y and T values are in rectangular form)
p[f_idx] == g/tm*w_fr_ne[i] + (-g*tr+b*ti)/tm*(wr_ne[i]) + (-b*tr-g*ti)/tm*(wi_ne[i])
q[f_idx] == -(b+c/2)/tm*w_fr_ne[i] - (-b*tr-g*ti)/tm*(wr_ne[i]) + (-g*tr+b*ti)/tm*(wi_ne[i])
PowerModels.constraint_ohms_yt_to_ne
— Function.p_ne[t_idx] == z*(g*v[t_bus]^2 + (-g*tr-b*ti)/tm*(v[t_bus]*v[f_bus]*cos(t[t_bus]-t[f_bus])) + (-b*tr+g*ti)/tm*(v[t_bus]*v[f_bus]*sin(t[t_bus]-t[f_bus])))
q_ne[t_idx] == z*(-(b+c/2)*v[t_bus]^2 - (-b*tr+g*ti)/tm*(v[t_bus]*v[f_bus]*cos(t[f_bus]-t[t_bus])) + (-g*tr-b*ti)/tm*(v[t_bus]*v[f_bus]*sin(t[t_bus]-t[f_bus])))
Do nothing, this model is symmetric
Creates Ohms constraints (yt post fix indicates that Y and T values are in rectangular form)
p[t_idx] == g*w_to_ne[i] + (-g*tr-b*ti)/tm*(wr_ne[i]) + (-b*tr+g*ti)/tm*(-wi_ne[i])
q[t_idx] == -(b+c/2)*w_to_ne[i] - (-b*tr+g*ti)/tm*(wr_ne[i]) + (-g*tr-b*ti)/tm*(-wi_ne[i])
Current
PowerModels.constraint_power_magnitude_sqr
— Function.p[f_idx]^2 + q[f_idx]^2 <= w[f_bus]/tm*cm[f_bus,t_bus]
PowerModels.constraint_power_magnitude_link
— Function.cm[f_bus,t_bus] == (g^2 + b^2)*(w[f_bus]/tm + w[t_bus] - 2*(tr*wr[f_bus,t_bus] + ti*wi[f_bus,t_bus])/tm) - c*q[f_idx] - ((c/2)/tm)^2*w[f_bus]
Thermal Limit Constraints
PowerModels.constraint_thermal_limit_from
— Function.constraint_thermal_limit_from(pm::GenericPowerModel, n::Int, i::Int)
Adds the (upper and lower) thermal limit constraints for the desired branch to the PowerModel.
p[f_idx]^2 + q[f_idx]^2 <= rate_a^2
norm([p[f_idx]; q[f_idx]]) <= rate_a
-rate_a <= p[f_idx] <= rate_a
PowerModels.constraint_thermal_limit_to
— Function.p[t_idx]^2 + q[t_idx]^2 <= rate_a^2
norm([p[t_idx]; q[t_idx]]) <= rate_a
Do nothing, this model is symmetric
PowerModels.constraint_thermal_limit_from_on_off
— Function.p[f_idx]^2 + q[f_idx]^2 <= (rate_a * branch_z[i])^2
Generic on/off thermal limit constraint
-rate_a*branch_z[i] <= p[f_idx] <= rate_a*branch_z[i]
PowerModels.constraint_thermal_limit_to_on_off
— Function.p[t_idx]^2 + q[t_idx]^2 <= (rate_a * branch_z[i])^2
nothing to do, from handles both sides
-rate_a*branch_z[i] <= p[t_idx] <= rate_a*branch_z[i]
PowerModels.constraint_thermal_limit_from_ne
— Function.p_ne[f_idx]^2 + q_ne[f_idx]^2 <= (rate_a * branch_ne[i])^2
Generic on/off thermal limit constraint
-rate_a*branch_ne[i] <= p_ne[f_idx] <= rate_a*branch_ne[i]
PowerModels.constraint_thermal_limit_to_ne
— Function.p_ne[t_idx]^2 + q_ne[t_idx]^2 <= (rate_a * branch_ne[i])^2
nothing to do, from handles both sides
Phase Angle Difference Constraints
PowerModels.constraint_voltage_angle_difference
— Function.branch phase angle difference bounds
t[f_bus] - t[t_bus] <= angmax
t[f_bus] - t[t_bus] >= angmin
t[f_bus] - t[t_bus] <= angmax
t[f_bus] - t[t_bus] >= angmin
angmin <= branch_z[i]*(t[f_bus] - t[t_bus]) <= angmax
angmin*branch_z[i] + vad_min*(1-branch_z[i]) <= t[f_bus] - t[t_bus] <= angmax*branch_z[i] + vad_max*(1-branch_z[i])
angmin*wr[i] <= wi[i] <= angmax*wr[i]
angmin <= branch_ne[i]*(t[f_bus] - t[t_bus]) <= angmax
angmin*branch_ne[i] + vad_min*(1-branch_ne[i]) <= t[f_bus] - t[t_bus] <= angmax*branch_ne[i] + vad_max*(1-branch_ne[i])
angmin*wr_ne[i] <= wi_ne[i] <= angmax*wr_ne[i]
Loss Constraints
PowerModels.constraint_loss_lb
— Function.p[f_idx] + p[t_idx] >= 0
q[f_idx] + q[t_idx] >= -c/2*(v[f_bus]^2/tr^2 + v[t_bus]^2)
DC Line Constraints
Network Flow Constraints
PowerModels.constraint_dcline
— Function.Creates Line Flow constraint for DC Lines (Matpower Formulation)
p_fr + p_to == loss0 + p_fr * loss1
Commonly Used Constraints
The following methods generally assume that the model contains p
and q
values for branches line flows and bus flow conservation.
Generic thermal limit constraint
constraint_thermal_limit_from(pm::GenericPowerModel, f_idx, rate_a)
constraint_thermal_limit_to(pm::GenericPowerModel, t_idx, rate_a)
Generic on/off thermal limit constraint
constraint_thermal_limit_from_on_off(pm::GenericPowerModel, i, f_idx, rate_a)
constraint_thermal_limit_to_on_off(pm::GenericPowerModel, i, t_idx, rate_a)
constraint_thermal_limit_from_ne(pm::GenericPowerModel, i, f_idx, rate_a)
constraint_thermal_limit_to_ne(pm::GenericPowerModel, i, t_idx, rate_a)
constraint_active_gen_setpoint(pm::GenericPowerModel, i, pg)
constraint_reactive_gen_setpoint(pm::GenericPowerModel, i, qg)