Lux.jl
Lux.jl is a library for machine learning in Julia.
The upstream documentation is available at https://lux.csail.mit.edu/stable/.
Supported layers
MathOptAI supports embedding a Lux model into JuMP if it is a Lux.Chain
composed of:
Basic example
Use MathOptAI.add_predictor
to embed a tuple (containing the Lux.Chain
, the parameters
, and the state
) into a JuMP model:
julia> using JuMP, Lux, MathOptAI, Random
julia> rng = Random.MersenneTwister();
julia> chain = Lux.Chain(Lux.Dense(1 => 2, Lux.relu), Lux.Dense(2 => 1))
Chain( layer_1 = Dense(1 => 2, relu), # 4 parameters layer_2 = Dense(2 => 1), # 3 parameters ) # Total: 7 parameters, # plus 0 states.
julia> parameters, state = Lux.setup(rng, chain);
julia> predictor = (chain, parameters, state);
julia> model = Model();
julia> @variable(model, x[1:1]);
julia> y, formulation = MathOptAI.add_predictor(model, predictor, x);
julia> y
1-element Vector{JuMP.VariableRef}: moai_Affine[1]
julia> formulation
Affine(A, b) [input: 1, output: 2] ├ variables [2] │ ├ moai_Affine[1] │ └ moai_Affine[2] └ constraints [2] ├ -1.6158136129379272 x[1] - moai_Affine[1] = -0.605017900466919 └ 3.3191375732421875 x[1] - moai_Affine[2] = -0.8034384250640869 MathOptAI.ReLU() ├ variables [2] │ ├ moai_ReLU[1] │ └ moai_ReLU[2] └ constraints [4] ├ moai_ReLU[1] ≥ 0 ├ moai_ReLU[2] ≥ 0 ├ moai_ReLU[1] - max(0.0, moai_Affine[1]) = 0 └ moai_ReLU[2] - max(0.0, moai_Affine[2]) = 0 Affine(A, b) [input: 2, output: 1] ├ variables [1] │ └ moai_Affine[1] └ constraints [2] ├ moai_Affine[1] ≥ 0.1861756145954132 └ 1.0926485061645508 moai_ReLU[1] + 1.0913904905319214 moai_ReLU[2] - moai_Affine[1] = -0.1861756145954132
Reduced-space
Use the reduced_space = true
keyword to formulate a reduced-space model:
julia> using JuMP, Lux, MathOptAI, Random
julia> rng = Random.MersenneTwister();
julia> chain = Lux.Chain(Lux.Dense(1 => 2, Lux.relu), Lux.Dense(2 => 1))
Chain( layer_1 = Dense(1 => 2, relu), # 4 parameters layer_2 = Dense(2 => 1), # 3 parameters ) # Total: 7 parameters, # plus 0 states.
julia> parameters, state = Lux.setup(rng, chain);
julia> predictor = (chain, parameters, state);
julia> model = Model();
julia> @variable(model, x[1:1]);
julia> y, formulation = MathOptAI.add_predictor(model, predictor, x; reduced_space = true);
julia> y
1-element Vector{JuMP.NonlinearExpr}: ((+(0.0) + (0.7679461240768433 * max(0.0, 2.6117944717407227 x[1] + 0.6344234943389893))) + (0.9949294328689575 * max(0.0, 0.9173315167427063 x[1] + 0.6309926509857178))) + 0.4690517783164978
julia> formulation
ReducedSpace(Affine(A, b) [input: 1, output: 2]) ├ variables [0] └ constraints [0] ReducedSpace(MathOptAI.ReLU()) ├ variables [0] └ constraints [0] ReducedSpace(Affine(A, b) [input: 2, output: 1]) ├ variables [0] └ constraints [0]
Gray-box
The Lux extension does not yet support the gray_box
keyword argument.
Change how layers are formulated
Pass a dictionary to the config
keyword that maps Lux activation functions to a MathOptAI predictor:
julia> using JuMP, Lux, MathOptAI, Random
julia> rng = Random.MersenneTwister();
julia> chain = Lux.Chain(Lux.Dense(1 => 2, Lux.relu), Lux.Dense(2 => 1))
Chain( layer_1 = Dense(1 => 2, relu), # 4 parameters layer_2 = Dense(2 => 1), # 3 parameters ) # Total: 7 parameters, # plus 0 states.
julia> parameters, state = Lux.setup(rng, chain);
julia> predictor = (chain, parameters, state);
julia> model = Model();
julia> @variable(model, x[1:1]);
julia> y, formulation = MathOptAI.add_predictor( model, predictor, x; config = Dict(Lux.relu => MathOptAI.ReLUSOS1()), );
julia> y
1-element Vector{JuMP.VariableRef}: moai_Affine[1]
julia> formulation
Affine(A, b) [input: 1, output: 2] ├ variables [2] │ ├ moai_Affine[1] │ └ moai_Affine[2] └ constraints [2] ├ 2.812434434890747 x[1] - moai_Affine[1] = 0.8092555999755859 └ 2.3449459075927734 x[1] - moai_Affine[2] = -0.7511179447174072 MathOptAI.ReLUSOS1() ├ variables [4] │ ├ moai_ReLU[1] │ ├ moai_ReLU[2] │ ├ moai_z[1] │ └ moai_z[2] └ constraints [6] ├ moai_ReLU[1] ≥ 0 ├ moai_ReLU[2] ≥ 0 ├ moai_Affine[1] - moai_ReLU[1] + moai_z[1] = 0 ├ moai_Affine[2] - moai_ReLU[2] + moai_z[2] = 0 ├ [moai_ReLU[1], moai_z[1]] ∈ MathOptInterface.SOS1{Float64}([1.0, 2.0]) └ [moai_ReLU[2], moai_z[2]] ∈ MathOptInterface.SOS1{Float64}([1.0, 2.0]) Affine(A, b) [input: 2, output: 1] ├ variables [1] │ └ moai_Affine[1] └ constraints [1] └ 0.7073101997375488 moai_ReLU[1] - 0.5056726336479187 moai_ReLU[2] - moai_Affine[1] = -0.43842771649360657