DecisionTree.jl
DecisionTree.jl is a library for fitting decision trees in Julia.
Binary decision tree regression
Here is an example:
julia> using JuMP, MathOptAI, DecisionTree
julia> truth(x::Vector) = x[1] <= 0.5 ? -2 : (x[2] <= 0.3 ? 3 : 4)
truth (generic function with 1 method)
julia> features = abs.(sin.((1:10) .* (3:4)'));
julia> size(features)
(10, 2)
julia> labels = truth.(Vector.(eachrow(features)));
julia> predictor = DecisionTree.build_tree(labels, features)
Decision Tree Leaves: 3 Depth: 2
julia> model = Model();
julia> @variable(model, 0 <= x[1:2] <= 1);
julia> y, formulation = MathOptAI.add_predictor(model, predictor, x);
julia> y
1-element Vector{JuMP.VariableRef}: moai_BinaryDecisionTree_value
julia> formulation
BinaryDecisionTree{Float64,Int64} [leaves=3, depth=2] ├ variables [4] │ ├ moai_BinaryDecisionTree_value │ ├ moai_BinaryDecisionTree_z[1] │ ├ moai_BinaryDecisionTree_z[2] │ └ moai_BinaryDecisionTree_z[3] └ constraints [7] ├ moai_BinaryDecisionTree_z[1] + moai_BinaryDecisionTree_z[2] + moai_BinaryDecisionTree_z[3] = 1 ├ moai_BinaryDecisionTree_z[1] --> {x[1] ≤ 0.4743447016210958} ├ moai_BinaryDecisionTree_z[2] --> {x[1] ≥ 0.4743457016210958} ├ moai_BinaryDecisionTree_z[2] --> {x[2] ≤ 0.41966399895337797} ├ moai_BinaryDecisionTree_z[3] --> {x[1] ≥ 0.4743457016210958} ├ moai_BinaryDecisionTree_z[3] --> {x[2] ≥ 0.41966499895337794} └ 2 moai_BinaryDecisionTree_z[1] - 3 moai_BinaryDecisionTree_z[2] - 4 moai_BinaryDecisionTree_z[3] + moai_BinaryDecisionTree_value = 0
Random forest regression
julia> using JuMP, MathOptAI, DecisionTree
julia> truth(x::Vector) = x[1] <= 0.5 ? -2 : (x[2] <= 0.3 ? 3 : 4)
truth (generic function with 1 method)
julia> features = abs.(sin.((1:10) .* (3:4)'));
julia> size(features)
(10, 2)
julia> labels = truth.(Vector.(eachrow(features)));
julia> predictor = DecisionTree.build_forest(labels, features)
Ensemble of Decision Trees Trees: 10 Avg Leaves: 3.0 Avg Depth: 2.0
julia> model = Model();
julia> @variable(model, 0 <= x[1:2] <= 1);
julia> y, formulation = MathOptAI.add_predictor(model, predictor, x);
julia> y
1-element Vector{JuMP.VariableRef}: moai_AffineCombination[1]
julia> formulation
AffineCombination ├ 0.1 * BinaryDecisionTree{Float64,Int64} [leaves=4, depth=2] ├ 0.1 * BinaryDecisionTree{Float64,Int64} [leaves=3, depth=2] ├ 0.1 * BinaryDecisionTree{Float64,Int64} [leaves=3, depth=2] ├ 0.1 * BinaryDecisionTree{Float64,Int64} [leaves=3, depth=2] ├ 0.1 * BinaryDecisionTree{Float64,Int64} [leaves=3, depth=2] ├ 0.1 * BinaryDecisionTree{Float64,Int64} [leaves=3, depth=2] ├ 0.1 * BinaryDecisionTree{Float64,Int64} [leaves=3, depth=2] ├ 0.1 * BinaryDecisionTree{Float64,Int64} [leaves=2, depth=2] ├ 0.1 * BinaryDecisionTree{Float64,Int64} [leaves=2, depth=2] ├ 0.1 * BinaryDecisionTree{Float64,Int64} [leaves=4, depth=2] └ 1.0 * [0.0] ├ variables [1] │ └ moai_AffineCombination[1] └ constraints [1] └ 0.1 moai_BinaryDecisionTree_value + 0.1 moai_BinaryDecisionTree_value + 0.1 moai_BinaryDecisionTree_value + 0.1 moai_BinaryDecisionTree_value + 0.1 moai_BinaryDecisionTree_value + 0.1 moai_BinaryDecisionTree_value + 0.1 moai_BinaryDecisionTree_value + 0.1 moai_BinaryDecisionTree_value + 0.1 moai_BinaryDecisionTree_value + 0.1 moai_BinaryDecisionTree_value - moai_AffineCombination[1] = 0 BinaryDecisionTree{Float64,Int64} [leaves=4, depth=2] ├ variables [5] │ ├ moai_BinaryDecisionTree_value │ ├ moai_BinaryDecisionTree_z[1] │ ├ moai_BinaryDecisionTree_z[2] │ ├ moai_BinaryDecisionTree_z[3] │ └ moai_BinaryDecisionTree_z[4] └ constraints [11] ├ moai_BinaryDecisionTree_z[1] + moai_BinaryDecisionTree_z[2] + moai_BinaryDecisionTree_z[3] + moai_BinaryDecisionTree_z[4] = 1 ├ moai_BinaryDecisionTree_z[1] --> {x[2] ≤ 0.508008474393609} ├ moai_BinaryDecisionTree_z[2] --> {x[2] ≥ 0.508009474393609} ├ moai_BinaryDecisionTree_z[2] --> {x[2] ≤ 0.7509568278936385} ├ moai_BinaryDecisionTree_z[3] --> {x[2] ≥ 0.508009474393609} ├ moai_BinaryDecisionTree_z[3] --> {x[2] ≥ 0.7509578278936385} ├ moai_BinaryDecisionTree_z[3] --> {x[2] ≤ 0.9905675500332488} ├ moai_BinaryDecisionTree_z[4] --> {x[2] ≥ 0.508009474393609} ├ moai_BinaryDecisionTree_z[4] --> {x[2] ≥ 0.7509578278936385} ├ moai_BinaryDecisionTree_z[4] --> {x[2] ≥ 0.9905685500332488} └ -3 moai_BinaryDecisionTree_z[1] - 4 moai_BinaryDecisionTree_z[2] + 2 moai_BinaryDecisionTree_z[3] - 4 moai_BinaryDecisionTree_z[4] + moai_BinaryDecisionTree_value = 0 BinaryDecisionTree{Float64,Int64} [leaves=3, depth=2] ├ variables [4] │ ├ moai_BinaryDecisionTree_value │ ├ moai_BinaryDecisionTree_z[1] │ ├ moai_BinaryDecisionTree_z[2] │ └ moai_BinaryDecisionTree_z[3] └ constraints [7] ├ moai_BinaryDecisionTree_z[1] + moai_BinaryDecisionTree_z[2] + moai_BinaryDecisionTree_z[3] = 1 ├ moai_BinaryDecisionTree_z[1] --> {x[2] ≤ 0.41966399895337797} ├ moai_BinaryDecisionTree_z[2] --> {x[2] ≥ 0.41966499895337794} ├ moai_BinaryDecisionTree_z[2] --> {x[1] ≤ 0.5924959301027749} ├ moai_BinaryDecisionTree_z[3] --> {x[2] ≥ 0.41966499895337794} ├ moai_BinaryDecisionTree_z[3] --> {x[1] ≥ 0.5924969301027749} └ -3 moai_BinaryDecisionTree_z[1] + 2 moai_BinaryDecisionTree_z[2] - 4 moai_BinaryDecisionTree_z[3] + moai_BinaryDecisionTree_value = 0 BinaryDecisionTree{Float64,Int64} [leaves=3, depth=2] ├ variables [4] │ ├ moai_BinaryDecisionTree_value │ ├ moai_BinaryDecisionTree_z[1] │ ├ moai_BinaryDecisionTree_z[2] │ └ moai_BinaryDecisionTree_z[3] └ constraints [7] ├ moai_BinaryDecisionTree_z[1] + moai_BinaryDecisionTree_z[2] + moai_BinaryDecisionTree_z[3] = 1 ├ moai_BinaryDecisionTree_z[1] --> {x[1] ≤ 0.4079932080996804} ├ moai_BinaryDecisionTree_z[2] --> {x[1] ≥ 0.4079942080996804} ├ moai_BinaryDecisionTree_z[2] --> {x[2] ≤ 0.41966399895337797} ├ moai_BinaryDecisionTree_z[3] --> {x[1] ≥ 0.4079942080996804} ├ moai_BinaryDecisionTree_z[3] --> {x[2] ≥ 0.41966499895337794} └ 2 moai_BinaryDecisionTree_z[1] - 3 moai_BinaryDecisionTree_z[2] - 4 moai_BinaryDecisionTree_z[3] + moai_BinaryDecisionTree_value = 0 BinaryDecisionTree{Float64,Int64} [leaves=3, depth=2] ├ variables [4] │ ├ moai_BinaryDecisionTree_value │ ├ moai_BinaryDecisionTree_z[1] │ ├ moai_BinaryDecisionTree_z[2] │ └ moai_BinaryDecisionTree_z[3] └ constraints [7] ├ moai_BinaryDecisionTree_z[1] + moai_BinaryDecisionTree_z[2] + moai_BinaryDecisionTree_z[3] = 1 ├ moai_BinaryDecisionTree_z[1] --> {x[2] ≤ 0.41223711733275015} ├ moai_BinaryDecisionTree_z[2] --> {x[2] ≥ 0.4122381173327501} ├ moai_BinaryDecisionTree_z[2] --> {x[1] ≤ 0.5312021626994367} ├ moai_BinaryDecisionTree_z[3] --> {x[2] ≥ 0.4122381173327501} ├ moai_BinaryDecisionTree_z[3] --> {x[1] ≥ 0.5312031626994367} └ -3 moai_BinaryDecisionTree_z[1] + 2 moai_BinaryDecisionTree_z[2] - 4 moai_BinaryDecisionTree_z[3] + moai_BinaryDecisionTree_value = 0 BinaryDecisionTree{Float64,Int64} [leaves=3, depth=2] ├ variables [4] │ ├ moai_BinaryDecisionTree_value │ ├ moai_BinaryDecisionTree_z[1] │ ├ moai_BinaryDecisionTree_z[2] │ └ moai_BinaryDecisionTree_z[3] └ constraints [7] ├ moai_BinaryDecisionTree_z[1] + moai_BinaryDecisionTree_z[2] + moai_BinaryDecisionTree_z[3] = 1 ├ moai_BinaryDecisionTree_z[1] --> {x[1] ≤ 0.5312021626994367} ├ moai_BinaryDecisionTree_z[2] --> {x[1] ≥ 0.5312031626994367} ├ moai_BinaryDecisionTree_z[2] --> {x[1] ≤ 0.7938204426538661} ├ moai_BinaryDecisionTree_z[3] --> {x[1] ≥ 0.5312031626994367} ├ moai_BinaryDecisionTree_z[3] --> {x[1] ≥ 0.7938214426538661} └ 2 moai_BinaryDecisionTree_z[1] - 4 moai_BinaryDecisionTree_z[2] - 3 moai_BinaryDecisionTree_z[3] + moai_BinaryDecisionTree_value = 0 BinaryDecisionTree{Float64,Int64} [leaves=3, depth=2] ├ variables [4] │ ├ moai_BinaryDecisionTree_value │ ├ moai_BinaryDecisionTree_z[1] │ ├ moai_BinaryDecisionTree_z[2] │ └ moai_BinaryDecisionTree_z[3] └ constraints [7] ├ moai_BinaryDecisionTree_z[1] + moai_BinaryDecisionTree_z[2] + moai_BinaryDecisionTree_z[3] = 1 ├ moai_BinaryDecisionTree_z[1] --> {x[1] ≤ 0.7210746400035294} ├ moai_BinaryDecisionTree_z[1] --> {x[1] ≤ 0.4079932080996804} ├ moai_BinaryDecisionTree_z[2] --> {x[1] ≤ 0.7210746400035294} ├ moai_BinaryDecisionTree_z[2] --> {x[1] ≥ 0.4079942080996804} ├ moai_BinaryDecisionTree_z[3] --> {x[1] ≥ 0.7210756400035294} └ 2 moai_BinaryDecisionTree_z[1] - 3 moai_BinaryDecisionTree_z[2] - 4 moai_BinaryDecisionTree_z[3] + moai_BinaryDecisionTree_value = 0 BinaryDecisionTree{Float64,Int64} [leaves=3, depth=2] ├ variables [4] │ ├ moai_BinaryDecisionTree_value │ ├ moai_BinaryDecisionTree_z[1] │ ├ moai_BinaryDecisionTree_z[2] │ └ moai_BinaryDecisionTree_z[3] └ constraints [7] ├ moai_BinaryDecisionTree_z[1] + moai_BinaryDecisionTree_z[2] + moai_BinaryDecisionTree_z[3] = 1 ├ moai_BinaryDecisionTree_z[1] --> {x[2] ≤ 0.41116523477477984} ├ moai_BinaryDecisionTree_z[2] --> {x[2] ≥ 0.4111662347747798} ├ moai_BinaryDecisionTree_z[2] --> {x[1] ≤ 0.515200372485301} ├ moai_BinaryDecisionTree_z[3] --> {x[2] ≥ 0.4111662347747798} ├ moai_BinaryDecisionTree_z[3] --> {x[1] ≥ 0.5152013724853011} └ -3 moai_BinaryDecisionTree_z[1] + 2 moai_BinaryDecisionTree_z[2] - 4 moai_BinaryDecisionTree_z[3] + moai_BinaryDecisionTree_value = 0 BinaryDecisionTree{Float64,Int64} [leaves=2, depth=2] ├ variables [3] │ ├ moai_BinaryDecisionTree_value │ ├ moai_BinaryDecisionTree_z[1] │ └ moai_BinaryDecisionTree_z[2] └ constraints [4] ├ moai_BinaryDecisionTree_z[1] + moai_BinaryDecisionTree_z[2] = 1 ├ moai_BinaryDecisionTree_z[1] --> {x[1] ≤ 0.5934293790787758} ├ moai_BinaryDecisionTree_z[2] --> {x[1] ≥ 0.5934303790787758} └ -3 moai_BinaryDecisionTree_z[1] - 4 moai_BinaryDecisionTree_z[2] + moai_BinaryDecisionTree_value = 0 BinaryDecisionTree{Float64,Int64} [leaves=2, depth=2] ├ variables [3] │ ├ moai_BinaryDecisionTree_value │ ├ moai_BinaryDecisionTree_z[1] │ └ moai_BinaryDecisionTree_z[2] └ constraints [4] ├ moai_BinaryDecisionTree_z[1] + moai_BinaryDecisionTree_z[2] = 1 ├ moai_BinaryDecisionTree_z[1] --> {x[1] ≤ 0.5312021626994367} ├ moai_BinaryDecisionTree_z[2] --> {x[1] ≥ 0.5312031626994367} └ 2 moai_BinaryDecisionTree_z[1] - 4 moai_BinaryDecisionTree_z[2] + moai_BinaryDecisionTree_value = 0 BinaryDecisionTree{Float64,Int64} [leaves=4, depth=2] ├ variables [5] │ ├ moai_BinaryDecisionTree_value │ ├ moai_BinaryDecisionTree_z[1] │ ├ moai_BinaryDecisionTree_z[2] │ ├ moai_BinaryDecisionTree_z[3] │ └ moai_BinaryDecisionTree_z[4] └ constraints [11] ├ moai_BinaryDecisionTree_z[1] + moai_BinaryDecisionTree_z[2] + moai_BinaryDecisionTree_z[3] + moai_BinaryDecisionTree_z[4] = 1 ├ moai_BinaryDecisionTree_z[1] --> {x[2] ≤ 0.403738353154152} ├ moai_BinaryDecisionTree_z[2] --> {x[2] ≥ 0.403739353154152} ├ moai_BinaryDecisionTree_z[2] --> {x[2] ≤ 0.831189428657276} ├ moai_BinaryDecisionTree_z[3] --> {x[2] ≥ 0.403739353154152} ├ moai_BinaryDecisionTree_z[3] --> {x[2] ≥ 0.831190428657276} ├ moai_BinaryDecisionTree_z[3] --> {x[1] ≤ 0.46485066917802137} ├ moai_BinaryDecisionTree_z[4] --> {x[2] ≥ 0.403739353154152} ├ moai_BinaryDecisionTree_z[4] --> {x[2] ≥ 0.831190428657276} ├ moai_BinaryDecisionTree_z[4] --> {x[1] ≥ 0.46485166917802134} └ -3 moai_BinaryDecisionTree_z[1] + 2 moai_BinaryDecisionTree_z[2] + 2 moai_BinaryDecisionTree_z[3] - 4 moai_BinaryDecisionTree_z[4] + moai_BinaryDecisionTree_value = 0