AbstractGPs.jl
AbstractGPs.jl is a library for fitting Gaussian Processes in Julia.
Basic example
Here is an example:
julia> using JuMP, MathOptAI, AbstractGPsjulia> x_data = 2π .* (0.0:0.1:1.0);julia> y_data = sin.(x_data);julia> fx = AbstractGPs.GP(AbstractGPs.Matern32Kernel())(x_data, 0.1);julia> p_fx = AbstractGPs.posterior(fx, y_data);julia> model = Model();julia> @variable(model, 1 <= x[1:1] <= 6, start = 3);julia> predictor = MathOptAI.Quantile(p_fx, [0.1, 0.9]);julia> y, formulation = MathOptAI.add_predictor(model, predictor, x);julia> y2-element Vector{JuMP.VariableRef}: moai_quantile[1] moai_quantile[2]julia> formulationQuantile(_, [0.1, 0.9]) ├ variables [0] └ constraints [0]julia> @objective(model, Max, y[2] - y[1])moai_quantile[2] - moai_quantile[1]